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ABSTRACT: Although apparently simple, the polycondensation reaction leading to polyazomethine is difficult to control because of its

equilibrium character, the conversion degree being influenced by a series of parameters. The reaction between a siloxanediamine, 1,3-

bis(3-aminopropyl)tetramethyldisiloxane, and terephthalaldehyde was performed here in solution (in tetrahydrofuran) without by-

products removal and in absence of any catalyst or pH modifier. Different conditions (co-monomers ratio, dilution, and tempera-

ture), considered as input parameters for the process modeling, were varied according to a pre-established experimental program.

The viscosity of the reaction mixture was chosen as output parameter, being monitored with a Haake Viscotester 7 Plus-L. The pro-

cess modeling was performed using a hybrid combination of artificial neural networks and differential evolution algorithm, the last

one having the role of developing the neural model in an optimal form. The simulation results showed that the methodology pro-

vides accurate results, the model predictions being in close correlation with the experimental data. VC 2015 Wiley Periodicals, Inc. J. Appl.

Polym. Sci. 2015, 132, 42552.
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INTRODUCTION

Polyazomethines, polyamines, or Schiff base polymers are a class

of compounds containing azomethine (C@N) groups obtained

by nucleophilic addition of diamines to carbonyl groups of dia-

ldehydes or diketones.1,2 The structure of the polyazomethines

can be easily tailored with fully aromatic, aliphatic, or mixed

structure.1 In general, aromatic co-monomers are used because

the derived polyazomethines constitute an attractive class of high

performance polymers3,4 with interesting properties, which are

associated mainly with their conjugated backbone and the pres-

ence of imine groups: good thermal stability, mechanical strength,

nonlinear optical properties, semiconducting properties, environ-

mental stability, and fiber-forming properties, but also ability to

form metal chelates.5–8 Therefore, aromatic polyazomethines are

recommended candidates for potential applications in electronics,

optoelectronics, and photonics.9–11 Because of azomethine group,

capable of protonation and complexation,12 Schiff bases are well-

known ligands in the transition metal coordination chemistry.2

Therefore, they were intensely explored.13

However, because of the backbone rigidity, the full aromatic

polyazomethines show poor solubility in organic solvents and

high melting points which limit their practical applications in

various fields. Several alternative synthetic strategies such as

creation of the molecular asymmetry by incorporating of non-

coplanar groups in the main chain, attaching the bulky pend-

ant groups, for instance, the introduction of substituents (alkyl

or alkoxy groups) in the ortho-position of the aromatic ring

or insertion of aliphatic flexible spacers between aromatic rings

within the main chain are approached.7,8,14–16 Various

modified polyazomethines such as poly(azomethine-ester)s,

poly(azomethine-ether)s, poly(azomethine-carbonate)s, poly

(amide–azomethine-ester)s, poly(acrylate-azomethine)s, ther-

mosetting polyazomethines, poly(azomethine-sulfone)s, poly

(azomethine–ether-sulfone)s were also synthesized with the

goal to reduce the melting temperature, to improve the solu-

bility, as well as to promote specific properties.4,17 The inclu-

sion of polyazomethines in rotaxane architecture is another

strategy approached to improve their processability.18 Siloxane

moiety had also inserted as a flexible spacer, either in the

amine or carbonyl component, resulting in polyazomethines

with improved solubility19–25 because of high flexibility of the

siloxane bond and weak intermolecular interactions between

dimethylsiloxane units.
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In general, polyazomethines are easily obtained, the synthesis

requiring mild conditions (without precious catalyst, pressure,

or extreme temperature).12 The only by-product is water and

purification of the reaction product is relatively simple.26 Shift-

ing the equilibrium of this reaction toward the polyazomethine

formation is usually favored by the removal of water by-

product either by azeotrope distillation or by the use of dehy-

drating agent (molecular sieves, magnesium sulfate, etc.). The

mechanism of polyazomethine formation consists in nucleo-

philic addition of the amine to the carbonyl group to give in a

first stage carbinolamine, an unstable addition compound. Sub-

sequently, this loses water in a rate-determining step of the

reaction. Because the carbinolamine is an alcohol, it undergoes

acid-catalyzed dehydration. But the acid concentration cannot

be too high because amine, being a basic compound, can be

protonated and becomes non-nucleophylic and the equilibrium

might shift to the left with carbinolamine re-formation. Thus,

although apparently simple one, the polycondensation reaction

leading to polyazomethine is difficult to control because it is an

equilibrium reaction and the conversion degree is influenced by

many parameters such as the ratio between the two co-

monomers, the presence of by-product (water in this case) in

the reaction medium, the temperature, and dilution. The pro-

cess for the formation of azomethine is pH sensitive.27

Real-time measurements of reaction occurrence could provide

direct information about the processes or reactions, and are

useful in control, optimization, and other decision-making

steps. This involves sampling, pretreatment, measurement, inter-

pretation, and application of data.28 In the course of polymer

formation, the rheological parameters of the reactive mass

changes and their measurement and analysis could permit to

obtain information about the process. However, it is very diffi-

cult technically to measure the whole complex of rheological

parameters in the course of the process, especially if it is one

fast. Therefore, it is preferable to restrict the use of relatively

simple methods of viscometric measurements and dynamic

analysis, which constitutes the two major groups of methods

used nowdays in rheokinetics. The sphere of their application is

mainly determined by the properties of the material under

study.29 If the process of polymerization is a relatively low-

viscous liquid, viscometric method is recommended for moni-

toring of the viscosity changes during the chemical process. The

monitoring can be carried out through different viscometric

techniques available or by using specially designed instruments

(capillary or rotational viscometers or vibration instruments),

but the parameter to be measured is, in any case, the viscosity

of the medium.29

The synthesis of a siloxane-organic polyazomethine in solution,

in the absence of any catalyst, by in situ measurement of the

reaction mixture viscosity, was modeled using a procedure

based on Artificial Neural Networks (ANNs) and Differential

Evolution (DE) algorithm. Using this simulation method, the

viscosity of the reaction mixture was correlated with working

conditions (co-monomers ratio, dilution, and temperature).

ANNs are inspired from the biological brain and have computa-

tional structures capable of modeling complex systems, espe-

cially when they are hard to be described mathematically.30

Also, ANNs can perform parallel processing, learning, and they

are fault tolerant. Therefore, ANNs can be efficiently used to

solve difficult complex and nonlinear problems, from different

areas, their applications including: pattern recognition (auto-

mated recognition of hand-written text, fingerprint identifica-

tion), speech recognition, monitoring, and control of complex

plants.31 In the chemical engineering area, and especially for the

polymerization processes, ANNs were applied to a diversity of

processes, being included in various methodologies. Some

examples are enumerated: direct an inverse modeling of free

radical polymerization of methyl methacrylate,32 development

of a virtual soft sensor in the polyethylene terephthalate produc-

tion process,33 modeling the styrene living radical polymerization

mediated by 2,2,6,6-tetramethyl-1-piper-idinoxyl,34 selection of

mixture initiators for batch polymerization,35 modeling the free

radical polymerization of styrene,36 reaction temperature predic-

tion during the styrene polymerization,37 fluorescence modeling

of the polydimethylsiloxane/silica composites containing lantha-

num38 and the list remains opened.

DE, on the other hand, is an optimization techniques belonging

to the Evolutionary Algorithms (EAs) class, being inspired from

the Darwinian principle of evolution, in which only the fittest

individuals survive to the next generations. Among all EAs, DE

distinguishes as an efficient approach, easy to implement,

requiring little parameter tuning, and exhibiting fast conver-

gence.38 It was applied to solve different types of problems

(engineering, scheduling, decision-making, control, image proc-

essing) from different areas (chemical engineering, bioinfor-

matics, computational chemistry, molecular biology).39 For the

polymerization processes, DE was applied for optimization of

styrene production by dehydrogenation of ethyl benzene in an

adiabatic reactor,40 optimization of two styrene reactor configu-

rations,41 model optimization for the styrene polymerization

process,36 etc.

In this work, a combination between DE and ANNs is applied

for the synthesis of a polyazomethinecontaining flexible siloxane

sequences along the chain. DE, in a hybridized form, has the

role of optimizing the ANN which acts as a model for the pro-

cess. In this manner, the best model of the system is deter-

mined. This approach, belonging to the neuro-evolutive class,

was applied for developing the optimal model because, although

simple and easy to work with, ANNs are difficult to setup. Ini-

tially, a direct feed forward system was tested, but the results

were not in acceptable range and, therefore, a simple recurrence

(simulated through data manipulation) was employed to reduce

the error of the model.

The rest of this article is organized as follows. Section 2 is

reserved to the experimental setup, where materials, equip-

ment, and procedure are described. In the Section 3, the mod-

eling approach is described in details. Information about the

algorithm, how the combination algorithm–process is realized,

and the data processing procedure are presented. The results

and discussion related to the performance of the developed

models are included in the Section 4. Section 5 concludes the

article.
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EXPERIMENTAL

Materials

1,3-Bis(3-aminopropyl)tetramethyldisiloxane (AP0), [H2N(CH2)3

(CH3)2Si]2O, was purchased from Fluka: b.p. 5 1428C/11.5 mmHg,

d4
20 5 0.901.

Terephthalaldehyde (AT), C8H6O2, assay, mp 114 2 1168C

(Aldrich).

Tetrahydrofuran (THF), anhydrous,� 99.9%, inhibitor-free

(Sigma-Aldrich).

Equipment

The experimental installation (Figure 1) consists in an auto-

matic rotational viscometer, a water bath, and a computer.

The viscometer, a Haake Viscotester 7 Plus-L, was used with

small volume reactor and a TL-5 spindle due the low viscosity

of the probes. This combination was used because:

� Haake Viscotester 7 Plus-L is able to provide online monitor-

ing of the reaction process and can record the viscosity sec-

ond by second. For the temperature observation it was used

the PT100 temperature sensor.

� The small capacity reactor consists of dish with a reaction

volume of 8 mL optimal and is equipped with a thermostatic

jacket. It was chosen for its low reagent consumption.

� TL5 spindle has the ability to determine viscosity between 1

and 13.5 mPas, if it is used with the low volume reactor at a

rotation speed of 200 rot/min.

� The water bath is a Lauda Ecoline 003, a simple and precise

water bath who has an operating temperature range between

258C and 1208C.

� The computer is connected to the viscometer by a data cable

and runs the HAAKE RheoWin suite version 4.20.0005. For

the determination of viscosity it has been used the method of

CR viscosity time tests in HAAKE RheoWin 4 JobManager,

which applies a constant rotation speed to the spindle and

monitors the viscosity as a function of time. For data proc-

essing, it was used HAAKE RheoWin 4 DataManager.

Fourier transform infrared (FT-IR) spectra were recorded using

a Bruker Vertex 70 FT-IR spectrometer in the transmission

mode, in the range of 400–4000 cm21 at room temperature,

with a resolution of 2 cm21 and an accumulation of 32 scans.

Procedure

AT and AP0 were mixed in different ratios and at various dilu-

tions in THF, directly in the reactor of the viscometer and the

reaction mixtures were thermostated at temperature established

according to the experimental program (Table I). The progress

of reaction was studied by in situ continuously measurements of

the reaction mixture viscosity by using an automatic viscometer.

The product at the end of each experiment was analyzed by

spectral technique (FTIR).

The water by-product was not removed from the reaction mix-

ture, the reactions being carried on in conditions in which,

depending on the allocated time, as well as the reactants ratio

and their reactivity, they can achieve the equilibrium. To contin-

uously measure, in situ, viscosity changes, we drove these reac-

tions directly in the viscometer vessel, which, as it is built, does

not offer the possibility of removing secondary product as it is

formed. The use of drying agents may influence viscosity values.

Therefore, we performed the modelling on the basis of other

parameters: reactants ratio, solution concentration and tempera-

ture, in the presence of by-product.

A total of 90 experiments consisting in polycondensation reac-

tions at three different concentrations, 15, 20, and 25 wt %, six

different temperatures, 258C, 308C, 358C, 408C, 458C, and 508C,

and five different co-monomers ratios, 0.5/1, 0.75/1, 1/1, 1/0.75,

and 1/0.5 were performed. Some of them could not be moni-

tored, because their viscosity is too low for the reactor/spindle/

rotation speed combination that was used. Thus, only 67

remained valid experiments, and they have been included in

Table I and further used in modelling.

Operating Model

An experimental program consisting in a matrix with 67 experi-

ments performed in different conditions was established at the

beginning (Table I). Co-monomers molar ratio, their concentra-

tion in THF (C), and temperature (T) were chosen as input

parameters, while viscosity of the reaction mixture was the out-

put parameter.

In order to explain the operating mode, the following condi-

tions were taken into consideration: temperature of 258C, con-

centration of 25 wt %, and a 1 : 1 co-monomers molar ratio.

The proper amounts of AT (0.7 g) were dosed and dissolved in

6.56 mL THF in the recipient from the small volume reactor.

After this, the recipient was mounted in the thermal jacket and

then on the viscometer. The water bath was already settled to

258C and connected to the thermal jacket. The spindle was

immersed in the sample and let to rotate 10 minutes in order

to help the solution reach the desired temperature. After 10

Figure 1. The experimental setup for the monitoring of the condensation

reaction. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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minutes have passed, 1.44 mL AP0 were added and the viscom-

eter was started from the program. Evolution of the viscosity of

reaction mixture within 3 hours is shown in Figure 2.

IR spectra of the reaction mixture were recorded after solvent

evaporation.

MODELING PROCEDURE

Data Gathering and Processing

After the data were gathered using the system described previ-

ously, a set of data processing techniques were employed in

order to prepare them for the modeling and optimization pro-

cedures. These techniques include: (i) elimination of duplicate

data; (ii) shuffling; (iii) splitting, and (iv) normalization.

Depending on the reaction speed and frequency of data sam-

pling in the available data, the same system parameters are

obtained at different moments of time. In order to reduce the

data dimension so that the modeling and optimization proce-

dures run at an optimal speed (which depends not only on the

computer power, but also on the process and data dimension),

the samples in which only the time is different (the other

parameters remaining unchanged) are automatically removed

using a simple algorithmic procedure. In this manner, only the

significant data will be used for generating the process model.

Table I. Experimental Matrix

Exp. No. AT : AP0 (molar ratio) Conc., (wt/100)a Temp. (8C) Exp. No. AT : AP0 (molar ratio) Conc., (wt/100)a Temp. (8C)

1 2 : 1 15 25 35 3 : 4 20 30

2 2 : 1 15 30 36 3 : 4 20 35

3 4 : 3 15 25 37 3 : 4 20 40

4 4 : 3 15 30 38 3 : 4 20 50

5 4 : 3 15 50 39 1 : 2 20 25

6 1 : 1 15 25 40 1 : 2 20 30

7 1 : 1 15 30 41 1 : 2 20 35

8 1 : 1 15 35 42 1 : 2 20 40

9 1 : 1 15 40 43 1 : 2 20 50

10 1 : 1 15 45 44 2 : 1 25 25

11 1 : 1 15 50 45 2 : 1 25 30

12 3 : 4 15 25 46 2 : 1 25 35

13 3 : 4 15 30 47 2 : 1 25 50

14 3 : 4 15 35 48 4 : 3 25 25

15 3 : 4 15 40 49 4 : 3 25 30

16 3 : 4 15 50 50 4 : 3 25 35

17 1 : 2 15 25 51 4 : 3 25 40

18 1 : 2 15 30 52 4 : 3 25 50

19 1 : 2 15 35 53 1 : 1 25 25

20 1 : 2 15 50 54 1 : 1 25 30

21 2 : 1 20 25 55 1 : 1 25 35

22 2 : 1 20 30 56 1 : 1 25 40

23 2 : 1 20 50 57 1 : 1 25 45

24 4 : 3 20 25 58 1 : 1 25 50

25 4 : 3 20 30 59 3 : 4 25 25

26 4 : 3 20 35 60 3 : 4 25 30

27 4 : 3 20 50 61 3 : 4 25 35

28 1 : 1 20 25 62 3 : 4 25 40

29 1 : 1 20 30 63 3 : 4 25 50

30 1 : 1 20 35 64 1 : 2 25 25

31 1 : 1 20 40 65 1 : 2 25 30

32 1 : 1 20 45 66 1 : 2 25 35

33 1 : 1 20 50 67 1 : 2 25 50

34 3 : 4 20 25

a Total weight of reactants/weight of solution, C 5 100(mAP01mAT)/ (mAP01mAT1mTHF).
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In order to determine the best ANN that can work as a model

for the considered process, the available data must be shuffled

and split into two parts - training and testing. Shuffling is per-

formed for avoiding overfitting and preventing the model from

learning the data order instead of the actual relationships. On

what concerns the data splitting, usually 75% is chosen for

training, while the remaining 25% is used for testing. Another

consideration for using this splitting is based on several previ-

ous tests that show that no significant improvement is obtained

with other percentages. This is valid for the current process.

Another approach used for the obtaining of better results is

data normalization. In literature, different types of normaliza-

tions are encountered; in this work a Min-Max normalization

[eq. (1)] is chosen. It rescales the features of neural network to

a new range, the underlying distribution of the features remain-

ing unchanged:

xnorm5mint 1ðmaxt 2mint Þ
x-min

max2 min
(1)

where mint and maxt are the minimum and maximum values of

the range which is 20.9 and 0.9, respectively. Min and max are

the limits of the interval in which the feature x can take values.

Process Modeling with ANN-DE Tool

In order to model the process, a methodology based on a hybrid

combination of DE and ANN was applied. The algorithm, called

hSADE-NN, was proposed in one of our previous works42 and

consists in employing, along DE and ANN, two other algorithms

(Random Search - RS and Back Propagation - BK). The role of RS

and BK is to locally improve the best solutions found at each gen-

eration, and therefore to improve the performance of the overall

algorithm. Two local algorithms were applied instead of only one

because it was observed that, in some cases, BK alone does not

manage to improve the solutions.

The role of the ANN is to model the process, while DE acts as

a model optimizer. Among the existing types of ANNs, the vari-

ant chosen in this work is represented by the feed-forward mul-

tilayer perceptron neural network (MLP). The main aspects

taking into consideration when selecting MLP are related to its

simple structure, easy implementation, and property of univer-

sal approximator. Since it was determined that a network with

enough neurons in a single hidden layer can model any type of

function,43 a limitation to the number of hidden layers was

imposed at two. Also, a maximum number of neurons in the

hidden layers was set up (30) as this has an impact on overall

algorithm performance because a big ANN translates into a

lengthy individual for the optimization procedure. This correla-

tion is due to the fact that the evolutionary process of DE is

applied to a population of individuals which represents encoded

potential neural models for the considered process.

Figure 2. The rheogram obtained for C 5 25%, T 5 258C and AP0 : AT

molar ratio 1 : 1. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure 3. Graphical representation of the methodology applied to model the process. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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Figure 4. Reaction pathway leading to polyazomethine.

Figure 5. Comparative IR spectra: (a) AT; (b) AP0; (c) AT partially converted in azomethine; (d) siloxane-ftalimine polyazomethine (0.7 g AT, 1.14 mL

AP0 and 6.56 mL THF at 258C). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

http://wileyonlinelibrary.com


An encoding procedure was applied because DE cannot work

with ANN in its natural state. Since the fitness function and BK

algorithm can only be employed on ANN structures and not on

DE individuals, a simple direct encoding/decoding step is per-

formed every time the situation requires it.

As mentioned previously, DE automatically evolves a set of

ANNs in order to determine their internal parameters and

topology. The evolutionary process starts with a pool of ran-

domly generated solutions (improved with the Opposition

Based Learning approach - OBL) and stops until a termination

criterion is reached. OBL is based on the idea that, when ran-

domly generating a solution, the probability that its opposite is

closer to the desired solution is 50%. Consequently, the OBL

application on the initialization procedure reduces the distance

between the generated solutions and the desired ones, improv-

ing the probability of finding suitable models.

The stop criterion is formed from the combination of the low

Mean Squared Error (MSE) value, equal to e210, or the number

of generation being equal to a predefined value. In order to

eliminate the need of manually fine-tune of the DE parameters,

a self-adaptive procedure is applied for the crossover factor (Cr)

and for the mutation factor (F), which are the control parame-

ters of the algorithm. On the other hand, the number of indi-

viduals in the population Np (which represents the third DE

control parameter) is set fixed and equal to 250. This value was

selected based on observations from a set of preliminary simula-

tions (MSE variation with the number of generations), indicat-

ing that this is a good trade-of between performance and

resources consumed.

At the end of each generation, the best solution from the pool

of potential ones is chosen, meaning the solution with the high-

est fitness (which is inversely proportional with the MSE in the

Table II. Top 10 Results (Neural Models) Obtained with the hSADE-NN Algorithm

No. Fitness MSE train R2
training

RMSE MSE test R2
testing RMSE Topology

1 1755.002 0.000570 0.97123 0.2555 0.000688 0.98291 0.18159 5 : 20 : 1

2 1741.441 0.000574 0.97078 0.2575 0.000703 0.98217 0.18556 5 : 17 : 1

3 1733.064 0.000577 0.97043 0.2587 0.000704 0.98211 0.18563 5 : 18 : 1

4 1726.380 0.000579 0.97021 0.2597 0.000721 0.98125 0.19011 5 : 20 : 1

5 1731.415 0.000578 0.97041 0.2590 0.000725 0.98100 0.19133 5 : 17 : 1

6 1717.01 0.000582 0.96991 0.2611 0.000730 0.98074 0.19272 5 : 14 : 1

7 1730.213 0.000578 0.97036 0.2591 0.000731 0.98070 0.19284 5 : 8 : 1

8 1690.215 0.000592 0.96891 0.2653 0.000733 0.98062 0.19337 5 : 10 : 1

9 1702.381 0.000587 0.96935 0.2634 0.000737 0.98045 0.19440 5 : 3 : 1

10 1624.692 0.000616 0.97123 0.2555 0.000738 0.98291 0.18159 5 : 10 : 1

Figure 6. Structure of the obtained ANN model. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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training phase as described by Eq. (2)). In order to improve it

further, based on a random approach, either BK or RS is

applied to perform a local search, the best solution being

replaced only when a better individual is found.

fitness5
1

MSEtraining 1e210
(2)

A simplified schema of the modeling procedure and how it is

applied to the approached process is presented in Figure 3.

Based on the experimental data gathered from the process, a

series of ANN models are generated and improved with DE

algorithm hybridized with BK and RS. In the end, the best solu-

tion (chosen based on its fitness value) is used for generating

predictions useful for the chemical engineer.

RESULTS AND DISCUSSION

Experimental Results

The reaction between terephthalic aldehyde and 1,3-bis(3-ami-

nopropyl) tetramethyldisiloxane, leading to the formation of

polyazomethine, is presented in Figure 4. The reaction was per-

formed in solution by using THF as a solvent, in the absence of

any catalyst.

The reaction carrying out with the formation of azomethine

group was verified by FT-IR spectroscopy (Figure 5) following

the disappearance of the band at 1693 cm21 corresponding to

carbonylic bond and the bands of the amine bond’s at 3270 and

3372 cm21, which lead to the development of the band at

1643 cm21 assigned to new formed azomethine group. The

presence of SiAOASi bond is proved by the strong band at

1055–1069 cm21, while Si-CH3 groups manifested by the

absorption band at 1252–1254 cm21.

Modeling Results

After the data were gathered and processed, a set of simulations

with the hSADE-NN algorithm were performed. Initially, four

inputs were considered, represented by the following parame-

ters: C, T, AP0 : AT, and time, t, and an output - viscosity.

Depending on the initial conditions, the dynamic of the system

varies considerably and the simulations results were not accepta-

ble. Although MSE had relatively good values (2 3 102325 3

1023), when comparing the dynamic of the process it was

observed that the differences were quite high. Since the model-

ing scope was to determine a model positioned in the mini-

mum area of the search space, a 5th input for the model was

introduced in the form of a recurrence, respectively, the viscos-

ity at a previous time. In this manner, the output of the model

at a specific moment of time t has an influence on the predic-

tions at the next moment (t 1 1). In this case, the type of ANN

was kept the same (MLP), the number of inputs is raised to

five and the recurrence is simulated by applying a data process-

ing technique.

As previously discussed, a series of limitations to the network

topologies were imposed, the maximum number of allowed neu-

rons in the hidden layer being 30. The top 10 neural models

obtained are listed in Table II, where the topology is denoted as

“inputs: hidden neurons: outputs”, MSE represents the mean

squared error, R2 is the coefficient of determination (computed

as the correlation raised to the power of two) and RMSE is the

root mean squared error. The fitness is computed based on MSE

in the training phase and it is internally used by the algorithm

for determining the performance of the generated models. The

MSE in the testing phase was not included in the fitness function

in order to have an external dataset to the model determination.

Considering that the best model is the one with the lowest MSE

in the testing phase, from Table II it can be seen that the net-

work (5 : 20 : 1) with a MSE of 0.00068 is the best (Figure 6).

This model has a correlation of 0.9855 in the training phase

and 0.9914 in the testing phase. A comparison between the

experimental data and the predictions of this ANN for data

unseen in the training phase is presented in Figure 7.

The differences between the predicted data and the experimental

one (for the entire dataset) are small, fact which points out that

the considered approach is able to efficiently model the process.

When comparing the dynamic of the system (experimental vs. pre-

dictions), the differences are also quite small, as Figure 8 shows.

The neural network model proved capable to process a substan-

tial amount of data and gives almost overlapping predictions

with the experimental data.

The procedure applied here is not dependent of the polyazome-

thine synthesis process. Thus, based on its general character,

the developed modeling and optimization technique has good

chances to successfully be applied to other polymerization

processes.

Figure 7. Comparison between experimental data and neural network predic-

tions for the best model, MLP(5 : 20 : 1) in the testing phase. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.

com.]

Figure 8. Experimental vs. predictions with hSADE-NN for C 5 25%,

T 5 308C, AP0/AT 5 3 : 4. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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CONCLUSIONS

The formation of an alternant siloxane-organic polyazomethine

was monitored indirectly while pursuing viscosity change, in

situ, by using an automatic viscometer. A series of syntheses

were performed, using different concentrations, monomers

ratios, or temperatures, in a 10,800 seconds interval. The reac-

tion occurrence was also qualitatively verified by FTIR spec-

trometry. The high number of data obtained was processed

using a simple algorithm procedure. In this manner only the

relevant information about the process was retained.

The considered process was also modeled using two bio-inspired

computing techniques: ANN and DE. The ANN acts as a model,

while DE is the optimizer employed to simultaneously perform a

topological and parametric optimization of the neural network

model. The good results obtained (good performance measures,

small overall differences and good correlation between experimen-

tal data and model predictions in what concerns the dynamic of

the process) indicate that the considered modeling approach is

able to efficiently determine accurate models for the synthesis pro-

cess of polyazomethine. In addition, the obtained predictions are

useful for a significant understanding of the process, providing

information on the whole investigated domain and saving, in this

manner, materials, energy, and time.
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